
Page 1 of 13

viperOSK

Easy to use On-Screen Keyboard for 2D & 3D games

Guide Document v3.0

All materials are © vipercode corp

The Package

V3.0 Package includes the following:

- Keyboard and key prefabs

- Scripts: primarily OSK_Keyboard and OSK_Key to manipulate the keyboard layout and

keys, several other keyboard helper scripts are included as well

- OSK_Receiver for the text object receiving keyboard strokes.

- OSK_UI_Keyboard and OSK_UI_Key to manipulate the keyboard layout and keys for a

Unity UI implementation.

- [NEW 3.0] a component OSK_GamepadHelper to better streamline gamepad support,

including support for multiple controllers for on the same keyboard.

- Texture assets

- Examples: two example scenes with scripts that show full functioning of the on-screen

keyboard

Compatibility

viperOSK is a powerful on-screen keyboard that can be used in any platform supported by

Unity:

- PC/Mac [tested √]

- mobile (iOS & Android) [tested √]

- TVOS (AppleTV) [tested √]

- Consoles (PS4 & Xbox) [tested]

viperOSK can be fully configured from the Inspector without any need to adjust coding.

viperOSK uses Unity’s inhouse TextMeshPro for all on screen text. Assets could easily be

converted to plain TextMesh if users need [requires coding]

Requires TextMeshPro, TMP Essential Resources and TMP Examples & Extras packages.

The packages can be installed through the Unity Editor Package Manager. They are accessible

through Windows > Package Manager and Windows > TextMeshPro.

All source code (in C#) included!

Setup of viperOSK

Page 2 of 13

Drag and drop viperOSK_Keyboard (or viperOSK_UI_Keyboard for a Unity UI

implementation) from the prefab folder anywhere you would like the On-Screen Keyboard to be.

Where needed add a OSK_Receiver (or OSK_UI_CustomReceiver) to a TextMeshPro text

object and set the keyboard pointer to it under “output”.

OSK_Receiver requires a collider object (box collider would work).

For a cursor, add an OSK_Cursor to the OSK_Receiver object as child (see

viperOSK_Keyboard prefab or Example scenes for implementation)

The backgrounds for keys and the keyboard can be changed at will by simply using your own

texture or sprites.

The keyboard supports your own Fonts, although you must convert to a TextMeshPro Font

Asset (TMP_FontAsset). This can be done by going through Windows > TextMeshPro > Font

Asset Creator. The Creator allows you to import almost any font and produce a TMP_FontAsset

Releases

Version Release notes

3.0 • Addition of Example 5 scene that shows a full example of a UI system

• Example 5 also includes example of configuring accented characters (such as è,

á).

• Addition of Examples 6.A to illustrate the use of multiple controllers that
alternate in their use of the OSK

• Addition of Example 6.B to illustrate the simultaneous use of 2 controllers as
well as the use of animated objects to show which key is selected by a
controller.

• Addition of bypassDefaultInput [Boolean] to bypass viperOSK’s input
management. This helps developers who prefer using their own (ex: Rewired),
or the UI implementation.

• Addition of GamepadInput_Horizontal, GamepadInput_Vertical,
GamepadInput_Submit, GamepadInput_Cancel to provide developers tailored
access to gamepad input through custom event handlers.

• Passive support for Rewired built into OSK_GamepadHelper component
(requires Rewired asset and to define REWIRED in the project settings under
scripting define symbols).

• Addition of methods to set or get SelectedKey when using a gamepad
controller. This allows developers to default the key selection to any key on the
OSK.

• Addition of keyboard wrapping (for controllers) when your selection marker
goes off one end it wraps to the other (X, Y, XY and cascade wrapping
available). Note: Y wrapping not available in UI mode.

• Addition of sound when moving the selection marker using a controller, the
choice of audio can be changed in OSK_KeySounds inspector.

• Addition of support for various text alignment (Left, Center, Right)

• Addition of ability to add listeners to events such as the when an input field:
o OnSelect: when an input field is highlighted
o OnSelectClick: when an input field is highlighted and the user presses

the A button on their gamepad (or whatever the controller mapping is for
A button). Note: this event does not work with Unity’s UI Input Field as it

Page 3 of 13

is hardwired for OS keyboard support. Instead use the OSK_Receiver or
OSK_UI_CustomReceiver that are designed for viperOSK and provide
almost all of the functionality that Unity’s input field does.

o OnValueChanged: when the text in the input field is changed (the string
that is sent is the entire new text after changes)

o OnFocus and OnLostFocus: for when the receiver is “clicked on” or
deselected.

• Scripting Note: the callback when a key is pressed KeyCall parameters have
changed, the 2nd parameter is no longer the key type but rather the
OSK_Receiver for when the keyboard is outputting to more than one receiver
(saves you from creating 2 keyboards)

2.1 Minor bug fixes and addition of SetText_ShftEnabled(string) which allows

developers to program in special characters (for example: é) that are capitalized
when shift/caps is selected.

2.0 Considerable changes were made to viperOSK:
1- There is now two implementations of the on-screen keyboard:

a. OSK_Keyboard is largely the same implementation as before and can
work in most scenes (2D or 3D)

b. OSK_UI_Keyboard is a Unity UI implementation where the Keys are
modified UI Buttons

2- The ‘text’, cursor and ‘OnSubmit’ fields in OSK_Keyboard have been removed.
They are now found in the new “receiver” object where keyboard strokes are
sent. This allows developers to have multiple keyboard entry fields in the scene
and more control over the functioning and look of the text.

3- Added new component OSK_Receiver to receive OSK_Keyboard input. New
component handles text display, text selection and cursor displacement,
character limit, color and highlight color as well as the Submit events (allows
text fields to have different submit behaviours, see Example 4 scene)

4- Added two inherited implementations of OSK_Receiver:
OSK_UI_CustomReceiver and OSK_UI_InputField that can function in Unity
UI (regardless of Canvas Render settings). See Example 3 for demo.

5- Added OSK_Cursor and OSK_UI_Cursor for a more robust cursor
implementation, the look and color can be changed by modifying the sprite
object. Both component have prefab implementations.

6- TMP Essentials is a required prerequisite of using viperOSK (you can bypass
this depending on your level of programming/Unity knowledge).

7- Added ability to bypass programmed actions by allowing developers to set
special actions for OSK_SpecialKeys (see Inspector instructions below for
more). See Example 4, Tab key special action for illustration.

1.0 Original implementation. Detailed instructions are still available in this Guide Doc,
see Annex A.

Page 4 of 13

General Class Structure

OSK_Keyboard

main class for handling

the functioning of the on-

screen keyboard

OSK_Receiver

class for handling the

appearance of text and

actions that will be triggered

when the text is submitted

Also handles highlighting of

text

OSK_Cursor

class to handle the

appearance and

functioning of the cursor

OSK_KeySounds

class that contains list of

key sounds

Page 5 of 13

Setup in Inspector part-1

1- Bypass Default Input bypasses the built in controller support in viperOSK, this is useful

when using Unity UI version, or when using the OSK_GamepadHelper.

2- Generare On Start indicates whether the keys for the keyboard will be generated when

the gameobject is created (through Start() script). If set to false, the keys must be

generated in script through a call to Generate().

3- Output is the pointer to the OSK_Receiver game object where the text will be typed out

by the on-screen keyboard. You can use the existing gameobject in the prefab or drag-n-

drop your own under Output.

4- Key Prefab is a pointer to the Key prefab. The key prefab should be changed if you

want to use your own key texture.

5- Top Left is the Transform where the first key (top left most key) will be displayed, all

other keys will be drawn based on that (see more under Layout)

6- Key Label Color is the color of the key labels.

7- Key Size affects the scale of the keys and how they will look. For example, if x=1.5, then

keys will be 1.5 times their width.

8- Key Font is the pointer to a TMP_FontAsset (see Setup for more info), leaving it empty

will use the in-house TMP font, otherwise all keys will be displayed in the font of your

choosing.

9- Caps whether caps lock is on or not

10- Shift shows whether the Shift or Caps Lock key is pressed or depressed

11- Accept Physical Keyboard allows users with a hardware keyboard (ex, PC keyboard)

use their keyboard to type. Note that there are currently no limits to which characters will

be allowed by the keyboard. This is a planned enhancements in future versions.

Page 6 of 13

12- Accept GamePad Input allows viperOSK to accept gamepad/joystick controls to

highlight keys and select them (where touch controls are not available such as in

consoles).

13- Gamepad Keyboard Wrap will allow the selection marker to go to the other side (for

example from the right most key to the adjacent leftmost key). X, XY, and Y wrapping

are available, CASCADE wrapping will let the key go down one level when it’s off to the

right side and vice versa.

14- Highlighter Color color of highlighted key when using gamepad or other controls that

are not touch or mouse. If using a SelectionMarker in OSK_GamepadHelper, you can

set the alpha to 0 here.

15- Sound FX allows you to turn on or off whether key sounds will be used.

NOTES:

Changes from v1.0 to v2.0+:

In v1.0 the cursor was a text appended to the end, this has been changed to a far more
robust implementation through OSK_Cursor.

The OnSubmit callback is now handled in the OSK_Receiver. Developers can have
multiple Unity Events triggered the user hits the Return key

Page 7 of 13

Setup in Inspector part-2: Layout

16- Layout is a simple string that guides the layout of the keys on the keyboard. There are

several important notes to keep in mind as you setup the keyboard layout to your liking:

a. You must separate all characters (including ‘new line’ or ‘\n’) with a space (“ “).

The OSK_Keyboard script splits up the string using a single space as a

separator. If you run into an error it is highly likely you forgot to separate with

spaces correctly. We hope to create a more robust system in the future.

b. Punctuations and other keys must be spelled out using Unity KeyCode names.

Note that all digits will be automatically converted to Alpha (ex, Alpha1, not

KeyPad).

c. The keyword Skip is a special keyword to create spacing in your keyboard. The

format is Skip#.# for example Skip1.5 (no spaces!) will setup the next key at 1.5x

the key width. In the example above, the keys are offset using Skip.2 which

offsets the keys by 0.2x key width.

d. The Layout and using Skip is a powerful tool to setup the layout of the keyboard

exactly how you want. Like the following example where the digits are in a

keypad on the right:

Page 8 of 13

Setup in Inspector part-3: Special Keys

17- Special Keys is a list of keys you denote as being special. For example, the SPACE key

is a special key as it is much wider than a regular key.

a. viperOSK allows you to select any number of keys to be special. For each key

you first select the corresponding KeyCode, then set the display name (what

will show on the on-screen key); the Col is the color of the key; x_size is the

width (in float) of the key in multiples of Key Size (for example, Space is the width

of 6 keys); and, Key Sound Code denotes the index of the sound to be used for

this key (see Sounds section further below)

b. [v2.0 change] the behaviour of special keys like Tab can now be programmed

individually in the Inspector (see example above). Backspace, Shift, CapsLock,

Return, Delete are still handled in the script but can be modified as well. If a

Page 9 of 13

“specialAction” event is added then it would no longer go through the pre-

programmed KeyCall callback.

c. Any key can be designated as a Special Key, in example 2, you’ll see how we

used this feature to color the WASD keys differently similarly to what you see in

gaming keyboards.

Page 10 of 13

Setup in Inspector part-4: Key Types and Generating keyboard

18- Key Type Meta allows further meta specifications by key type. You can specify key color

and key sounds for each key type (digit, letter, punctuation or controls). Note the

following:

a. you should not have more than one specification per type

b. the color and behaviour of Special Keys will trump the specifications in

KeyTypeMeta

c. punctuations include mathematical and other symbols

19- The Generate button will remove previous keys and generate the keyboard in Editor.

The script can also be called during runtime for on-the-fly keyboard generation.

Page 11 of 13

Setup in Inspector part-5: Key Sounds

20- Key Sounds is a List of Audioclips that are reference from the OSK_Keyboard based

on their index. The have been preloaded with open source sound but we recommend

using your own if you have some handy. There are 4 pre-loaded sounds but you are not

limited to only 4, you can load more or less.

21- Select Key Sound is the sound made when moving your key selection using a

gamepad or controller

Page 12 of 13

OSK_Receiver setup

The OSK_Receiver is component for the TMP object that will receiving the key strokes. There a

few components that are important to the proper functioning.

1- The object must have a Collider, or, in the case of a Unity UI implementation it requires

a Selectable so that events like moving the cursor or selecting the input field (in case of

more than one) are triggered.

2- OSK_Receiver (or a component that inherits from it) should be in the same gameobject

as the TextMeshPro or the InputField.

Inspector fields are the following:

1- Text Limit: limits the number of characters the text field can take.

2- Text Receiver: is the TMP component that receives the text, this is populated

automatically if the TMP are on the same object, or can be set here.

Page 13 of 13

3- Interactable: when checked the user can select the component by clicking/touch on it,

and can move the cursor’s position in the string (requires an OSK_Cursor child object).

4- Allow Text Selection: when checked the user can do text selection by dragging the

pointer/touch.

5- Normal and Highlight Color: colors for normal text input and highlighted text (where

allowTextSelection is true).

6- Char Mask: masks the input with the character/string entered in this box. For example

“*” for a password field.

7- On Submit: Unity Events to send the submitted screen. Ensure you select the function

under “dynamic string” to send the text.

8- On Value Changed sends to any added listeners the new string text of the receiver

9- On Focus is called when the receiver is selected or the OnFocus() function is called in

script.

10- On Lost Focus is called when the receiver is de-selected or the OnLostFocus() function

is called in script.

This Guide Doc will be updated with new features as they are added to viperOSK. I hope it

makes your game dev easier and look forward to seeing your own creations with it.

For support, please email us at: support@vipercode.games

All materials are © vipercode corp

mailto:support@vipercode.games

